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SUMMARY 

The induction heating model described herein couples the standard heat conduction equation with electro- 
magnetic proximity-skin equations. An Inverse Finite Element procedure, which is based on prior determin- 
istic and probabilistic concepts, has been designed to solve the inherent inverse equation model with respect 
to the unknown coil current parameter. Simulated experiments using different noises in the input data have 
been performed in order to determine their influence on the estimated parameter. The IFEM has shown its 
capability to predict the optimal location for the temperature sensors, together with their numbers, 
consistently with a pre-specified estimate accuracy. Specifically, only one temperature sensor, located in the 
middle of the two turns of the coil, results to be sufficient to estimate the unknown parameter to a 
satisfactory accuracy degree. This, may significantly help to design optimal experiments. 
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1. INTRODUCTION 

Induction heating of material is extensively used because of its great flexibility in industrial 
applications. The main feature of induction heating is to keep the size and the shape of the heated 
zone under control. This is especially important for the heat treatment of specific regions of 
complex workpieces with high irregular boundaries. As with other similar heating processes, 
induction heating is also conveniently used thanks to its repeatability properties, its relatively 
low-energy consumption and its negligible pollution emission. 

The optimization of such processes usually requires an analysis of several working parameters 
and an accurate control of the most critical ones. This analysis may be accomplished experi- 
mentally or more economically with the use of specifically designed computational codes. Several 
rather effective computational techniques are currently available, among these the finite element 
method seems to be one of the most versatile for solving complex problems. In fact, irregular 
geometries and strong non-linearities in the partial differential equations may be handled without 
considerable supplemental efforts. 

From a physical point of view, a general and rigorous induction heating model requires the 
analysis of several coupled fields, such as the thermal, the magneto electric, the mechanical, the 
micro-structural and the diffusion of the alloying elements of the material being processed. These 
fields are strongly coupled through their dependence on material properties, boundary conditions 
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and inductive source. A few field coupling models have been previously examined and solved'.' 
as a deterministic (or direct) problem, according to the definition given by Beck.3 Other more 
simplified models have been proposed4*' following the same approach, which are based on heat 
conduction and Maxwell's time-harmonic equations coupling. Except for simple mono-dimen- 
sional problems, such models appear significantly costly in terms of memory allocation and 
execution times especially when applied to on-line simulations. This is mainly due to the complex 
and intrinsic strong coupled nature of Maxwell's equations which yet need to be integrated not 
only into the workpiece but also in the surrounding air space. 

All these drawbacks have encouraged the authors to search for a more effective induction 
heating model. 

In previous works6s7 attempts have been made to the model induction heating problem by 
coupling the electromagnetic proximity-skin model with the heat conduction equation.' As 
a result only the thermal and current density fields need to be computed simultaneously, thus 
avoiding the non-essential and costly calculation of the magnetic field. When dealing with simple 
geometries, the proximity-skin effect may be described by a simple equation that is a function of 
two unknown parameters, i.e. the coil current and the coil-workpiece coupling, respectively. The 
coil current parameter directly affects the maximum temperature of the cycle. The coupling 
parameter is basically used for post calculations, for instance, in the estimation of the heating 
process efficiency. Both these parameters are of fundamental importance for induction heating 
equipment design and process optimization. However, these parameters are not easy to measure 
practically, therefore an inverse procedure6* is necessary to solve the inherent parameter 
estimation problem. In previous  work^,^,^ however, no information on the accuracy of the 
parameter estimation was reported due to the lack of available experimental data. 

The aim of this work is to investigate the performance of the inverse procedure adopted in6,7 
with respect to the estimation of the unknown coil current parameter. The choice of the study of 
such parameter is suggested by the great interest that it covers in practical applications. 

Simulated experiments are carried out in order to investigate the influence of the amount of 
data used as input for the model and the noise effect (if any) on the convergence procedure of the 
adopted Inverse Finite Element Model (IFEM). The validation of the IFEM has been accomp- 
lished by comparisons with both real temperatures and coil current measurements. 

2. THE PHYSICAL PROBLEM 

The system investigated, shown in Figure 1, is arranged vertically. It consists of a cylindrical bar, 
longitudinally fixed while rotating about its axis to allow for a uniform heating. A two-turn coil, 

Figure 1. Scheme of the analyzed induction system. For clarity the figure is out of scale. The dimensions indicated are in 
mm 
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which is mounted coaxial to the bar, is cooled internally by water and crossed externally by an 
AC current. The current induces an electromagnetic field on the workpiece causing the rapid 
heating by a mechanism which is assumed to be governed by the proximity-skin effect theory. The 
relative position of the coil, with respect to the bar, is assumed to be unchanged during the 
thermal cycle (single shot heating). The bar, which is surrounded by still air, is cooled by 
convection (line EF) and by convection-radiation (line HE). A fixed temperature boundary 
condition is assumed to be applied on the upward cylinder base (line HG). 

3. THE PROXIMITY-SKIN MODEL 

The proximity-skin effect theory3 was originally derived for a monofilamentary-thin plate 
conductor system. This theory has been suitably extended to axisymmetric geometries and 
multi-turn coils.' The electromagnetic field generated by the coil directly affects the current 
density distribution in the workpiece. According to the proximity theory, a single-turn coil causes 
a surface current density JR(x) on the workpiece which is distributed along the x-axis as 

From equation (l), the dependence of the coil current I and the distance between the coil and the 
workpiece h on JR(x) is clear (see Figure 1). If the coil is mounted close to the workpiece, as in 
actual cases, then the vicinity efect has also to be taken into account. In such case a correction 
h' = ,/-: for h has to be introduced into equation (l), therefore giving 

1 
nh width 

Where R ,  is the radius of the coil cross-section. With only the purpose of evaluation the power 
distribution in the workpiece in mind, it has been shown13 that equation ( 2 )  can be extended with 
satisfactory approximation, to any cross-section shape, provided the radius R, is replaced by an 
equivalent one. In the present work, the equivalent radius R,  has been deduced by comparing the 
total current flowing into the actual (square) coil cross-section with that flowing into an 
imaginary round one of a size R, ,  and solving the equation with respect to the equivalent R,.  

For a correct estimation of the coil current I, it is necessary that such a calculation be 
accomplished till the end of the heating process in order to obtain a more reliable and 
representative mean value of I over the whole cycle. 

In addition, the superposition principle is applied to all the turns that compose the coil in order 
to take all the individual current density effects at each integration point of the heat-treated 
material'' into account. As a result, the following equation is derived in the case of a double-turn 
coil system: 

where d is the inter-distance of the two turns. 
From the same theory, the surface power density peak, P D M A X ,  given by 

2 

PDMAX = $ [L] (4) 

which determines the maximum temperature of the cycle TMAX.  
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In equation (4), the symbol 6 represents the skin depth (defined in equation (8)), and ps is the 

For axisymmetric geometries the width in (1)-(3) is simply replaced by 27cR. 
An auxiliary empirical equation (8) for the power density is given by 

electrical resistivity of the workpiece. 

with 

where R,  p ,  c are the radius, the density, and the specific heat of the workpiece respectively, while 
zH is the heating time. 

Numerical experience has shown that equations (4) and (5),  when solved with respect to I ,  
provide a good starting value for initiating the iterative procedure in the Inverse finite element 
model. 

Finally, the skin effect theory provides the current density distribution in the bulk as a function 
of the workpiece radius r: 

-- J(r ,  x, I )  her'(@) + j b e i ' ( B )  
J R ~  I )  b e r ' ( a )  + j b e i ' ( a )  

- (7) 

In equation (7), ber' and bei' are the derivatives of the functions, named by Kelvin, to express, 
respectively, the real part and the imaginary part of the Bessel functions. The well-known 
equation for determining the skin depth is 

6 = (Ps/.iuf)o" (8) 
where p is the magnetic permeability and f is the service frequency. 

The overall current density distribution J ( r ,  x, I )  is easily found by combining equations (3) and 
(7). In the present study all the material properties, including the source term qv are, at least, 
temperature dependent. The inductive heat generation rate per unit of volume is 

qv(r,x,I) = ps lJ ( r ,x ,4  n2 (9) 
The peculiarity of the present proximity-skin model, with respect to the Maxwellian one, is that 

the end physical effect, (i.e. the current density distribution), in the workpiece is easily available for 
the subsequent calculation of the power density distribution without any need to precalculate the 
magnetic field. This will contribute to a significant saving of memory  requirement^.'^ Further- 
more, it has been shownI2 that such a electromagnetic model, when applied in conjunction with 
finite elements, provides a good estimation of the power distribution and the net power supplied 
to the workpiece with respect Maxwell's equation model. 

4. THE THERMAL MODEL 

The standard heat conduction equation, written in tensor notation, is 

Ck(T)T,il,i + qv(r,x,I, T )  = pc(T)dtT (10) 
with k the thermal conductivity of the workpiece. 

surface HE as shown in Figure 1: 
The boundary conditions are of the Newton type on the downward base EF and on the lateral 

(1 1) - k(T)T,i = a ( T -  Ta) + 0&(T4 - T t )  
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In equation (11) tl is the convection coefficient for still air, E is the surface emissivity of the 
workpiece and (T the Stefan-Boltzmann constant. The prescribed temperature boundary condi- 
tion (on the upward base HG) is given by 

T(r,  - L/2,t) = T, 

T(r, x, 0) = T, 

(12) 

(13) 

The initial condition is 

5. THE INVERSE PROBLEM 

A general physical problem may be modelled by a minimum set of quantities defined as model 
 parameter^.^ Some of these quantities, designated as model data d, have the property of being 
measurable; other quantities designated as model parameters m, are not measurable. A general 
model may be written as 

F(d,m) = 0 (14) 

To solve the problem (14) two approaches are possible, either a direct or an inverse one. In the 
direct model, equation (14) is solved in the following generic functional form: 

d = G(m) (1 5 )  

in which the measurable quantities d are calculable provided that the non-measurable m are 
known. This is normally done, for instance, in cases where the temperatures are calculated by 
FEM, starting from the prior knowledge of thermophysical properties and boundarylinitial 
conditions. This type of problem has been extensively solved in the past in many engineering 
fields. ' 9  '3 

In the inverse model, equation (14) is solved in the form 

m = G-'(d) (16) 

where, the non-measurable quantities m are calculated from the prior knowledge of the measur- 
able data d. The inverse approach has been successfully applied in a few engineering fields3s9 since 
it allows the evaluation of the system features with the aid of measurements. However it has the 
disadvantage of adding new experimental uncertainties or experimental errors to the ordinary 
mathematical model. Due to this, models of inverse type have to rely on mixed deterministic and 
probabilistic concepts. 

The methods proposed by Beck for the analysis of heat conduction problems3 and by 
Tarantola' for the analysis of geological problems are here adopted to solve the parameter 
estimation problem. Before going into details on the IFEM, some definitions are necessary. 

In this work the measurable data d is replaced with a set of observed temperatures Y, defined as 

where each element corresponds to the mth spatial point located on the surface (as A, B, C, and 
D shown in Figure 1). The non-measurable quantity m is represented by the unknown coil 
current parameter I. 

For the jth element of Y, N discrete components representing N observations in time are 
defined. The resulting Y vector contains N by M elements: 

Yj' = YT( t j )  = [ Y l ( t j )  --.  Yi(tj) ... YN(tj)]T (18) 
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Analogously, a vector 'f, which is referred to the calculated temperatures evaluated to the same 
M points and N sampling times, is defined as 

+T = [TT'. T y . .  (19) 

In the following, we assume that the material properties, the boundary conditions and all the 
working parameters (except I )  in the mathematical model are known. Then the measured and the 
calculated temperatures differ ideally by some quantity that depends on both the measurement 
and the model representation errors. To account for such differences two quantities are introduc- 
ed, namely the residual: 

s(1)  = ? ( I )  - Y (21) 

e = Y , - Y  (22) 
In equation (22), Ye are the true (exact) observed values, while Y are those measured by 
instruments. Since it is practically impossible to know Ye exactly it will be replaced by the 
numerical values T(I) which may be provided by using a reliable computational model. Accord- 
ingly, the errors e may be replaced by the residuals s. 

According to Tarantola,' it has been assumed that the residuals hold a normal (Gaussian) 
distribution, with zero mean and standard deviation a known. Therefore, the probability density 
of the unknown parameter I may be expressed in the generic form as 

and the experimental error: 

$(I) = K exp[ - 3 S(l)]  

S ( I )  = STC,'S = [ ? ( I )  - YlTC, [ + ( I )  - Y] 

(23) 

(24) 

Here, K is a suitable constant, while S ( I )  is a function of the square residuals defined by 

where C, is the square symmetric covariance matrix of the residuals. 
If the measurement errors are still assumed uncorrelated, the covariance matrix C, reduces to 

the main diagonal matrix, where each element is equal to the standard deviation of the related 
measurement data: 

C, = diag[a;*,oT2, . . . , ai;] (25) 

It can be shown that an optimal estimation of parameter f may be obtained by minimizing the 
function $ ( I )  in equation (23) with respect to I .  

Tarantola' demonstrates that it is possible to adequately describe the probability density of the 
unknown parameter I by calculating the point of maximum likelihood. This may be obtained by 
searching for the maximum of equation (23), or by searching for the minimum of equation (24), 
with respect to the parameter I ,  that is to say 

dS 
d l  

dS = - d l  = 2XTC,'[?(I) - Y]dZ = 0 

where X is the sensitivity coefficients vector defined as 

d?(Z) X = -  
df (27) 
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However, since S depends on I through a non-linear relationship, an iterative procedure is 

If r i s  an estimate of I ,  then the model values ? may be obtained by linearization about the 
required. 

parameter I in its neighbourhood: 

If equation (28) is substituted in equation (23) the following non-linear equation system will 
result: 

X T c ; Q ( r )  + X.(I  - r) - Y] = 0 (29) 

The solution of equation (29) can be achieved numerically by applying the following iterative 
scheme: 

(30) + 1) = I ( k )  + p -  1 ( I ) ( k ) .  H ( I ) ( k )  

where 

Pk = XT(P). c, . X(P)  

H k  = XT(Zk).Ccl.[?'(Zk) - Y] 

The parameter is updated at each iteration until a suitable convergence criterion is satisfied: 

with to1 being a suitable pre-defined tolerance value. 
At the end of the iteration process, either the standard deviation (0;) or the variance of the 

parameter estimated (aI) may be computed as a measure of the accuracy of the estimation 
procedure. 

The former is given by 

where ZML is the unknown parameter estimated by the maximum likelihood approach. 

ments may be defined as3 
Finally, the index used as a measure of the accuracy for modelling induction heating experi- 

6. THE INVERSE-FE MODEL 

In induction heat treatment problems the material may undergo phase changes which greatly 
influence the problem solution. In the present case this problem has been avoided by choosing 
an aluminium alloy which does not change its crystallographic structure before the melting 
temperature. 

From equations (10) and (11) the following well-known FE equation set is derived: 

C(T)T + K(T)T + F(T, I )  = 0 (35) 

where C, K, F are the capacity matrix, the stiffness matrix and the load term vector, respectively. 
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These arrays are defined as follows: 

c 

,. c 

Matrices C and K are temperature dependent only. The effective convection-radiation coefficient 
is defined as 

a = a +  O&(C + Ta)(T,2 + T,Z) (39) 

The system (35) has to be solved in an inverse manner, due to the fact that temperatures are 
measured at some points and vector F is dependent on both T and I ,  through 4". Equation (10) 
has been integrated in space by using four-node quadrilateral isoparametric finite elements. The 
so-called single-step first-order predictor-corrector recurrence scheme (SS11) has been used to 
integrate the set (35) of ordinary differential equations." The algorithm allows an automatic 
timestep selection during time integration, based on the control of the local time truncation 
error. lo  

The computational steps of the IFEM are summarized in the algorithm of Figure 2. 

j &stern 1 1 Err. Geyator  I 

r7-1 y e +  
Experiment Experiment 

I 

Y 

Fields, 
E E t e r ,  
Fields, - Errors 

Figure 2. Inverse finite element model algorithm used for the solution of the unknown parameter estimation in induction 
heating problems 
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7. RESULTS AND DISCUSSION 

In order to simplify the following numerical tests an axisymmetric geometry has been investi- 
gated, though the model may be applied to more complex configurations. 

The IFEM is first applied to analyse how different measurement noise levels may affect the 
estimated parameter. This question generally arises in optimal experiment design problems when 
one has to select the most suitable instrument class compatibly with the prefixed target accuracy. 
To pursue this objective two paths are possible, (a) or (b), as shown in Figure 3. The main 
difference between each path is the origin of the data source. Frequently, data comes from 
laboratory experiments that are performed on real systems (i.e. path a). An alternative is to 
generate them by simulated experiments (i.e. path b). 

Path (a) is first considered. Initially, a hypothetical true value, namely I = 4920 A, is assumed 
for the coil current. This current value is consistent with actual measurements performed during 
heating at 6 kHz. The boundary conditions that completely define the thermal problem are 
schematically shown in Figure 1. Specifically, they are of three types: (a) prescribed, with 
temperature set at 25°C on side HG; (b) convection and radiation in air, on the lateral surface HE; 
(c) convection in air, on the bottom base of the cylinder EF. The mean convection coefficient u has 
been set to 30 W/m' K, while the surface emissivity has been set at a constant value equal to 0.7. 
The initial temperature of the material is assumed to be equal to 25"C, which corresponds to the 
equilibrium temperature of the surrounding environment. The cycle duration is equal to 6s .  The 
material properties, (i.e thermal conductivity k, specific heat c, the electrical resistivity ps and the 
density p)  for the given material (i.e. aluminium alloy) are assumed to be variable with the 
temperature' (see Table I). 

I .  

2. 

3. 

8. 

Set problem data and boundary/initial conditions 
Initiolize counters k = 0; set initial pameter  1'. Yo = 0 

Increment parameter iteralion counter k = k + 1 

Updafe parameter I' = I'-' + Y'-' (see eq. 
loop J = 0 10 I - solve fdlowing 5-12 steps twice p) 

Cfpdateprameter lk = P+J& 
Initialize time loop: I, = 0, n = 0 

Increment time counter: n = n + 1 

Increment time step I, = I,, + AI, 
uixiate electrica1- magnetic properties p,(+l). w(+-l) 

9. 

10. updole t/wnnatpmpenies k(+-l),pc(+l) 

11. 

compute electric hnsityfieici j ( r , x y ,  mtd &)l 

Solve for the thermaljeld +( r ,xr  

12. f l l .<tM gOt0 7 
13. Increment j 
14. 

IS .  

16. A I k = P - ' ( I k ) ~ / f ( I k )  Md got03 

17 Print Output: I ;  j (r ,x);  ?(r,x); ar, a, 

I8 END 

Compute H, P, X. S, C, 
Check for parameter convergence. iffirlfildgo to 17 

Figure 3. Scheme for optimal experiment design 
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Table I. Material properties for the aluminium alloy used in 
the calculations 

T P S  P C  k 
("C) (am)  ( W S ~ - ~ K - ' )  ( W m - l K - ' )  

20 0.027 x 2.52 x lo6 211 
100 0.0364 x 2.59 x lo6 219 
200 00478 x 2.65 x lo6 224 
300 0.0599 x 2.71 x lo6 223 
400 0073 x 2.78 x lo6 216 
500 0087 x 2.84 x lo6 209 
600 0.104 x 10-6 2.89 x lo6 200 

The finite element solver is first executed in a direct fashion (i.e. in one iteration) in order to 
provide the overall temperature field for the workpiece { 7'). Special care has been taken to design 
the mesh near the surface, within the skin depth region, where high-temperature gradients are to 
be expected. Prior tests have suggested that a non-uniform mesh of 153 nodes and 128 elements is 
an optimal trade-off between calculation accuracy and execution times. The average (stationary) 
timestep used for time integration has been of about 0.01 s, except for the early stage of the 
transient in which it has been reduced to an order of 1 x 10-4s. 

Conventionally, the temperatures obtained by the finite element model at this step are 
designated as 'exact' Ye. From the nodal solution vector Ye a subset of N M  ( = 7 x 4) sample 
values has been extracted. These values correspond to fictitious temperature readings made at 
N specified space locations along the surface (points A, B, etc. in Figure 1) and M discrete 
sampling times. Then, three sets of random temperature errors of variance cSIM (4, 5, 15"C, 
respectively) are generated by the computer3 and added to Ye. As a result three vectors Y are 
obtained as input data for the IFEM. These data are subsequently used to investigate the 
influence of random errors on the estimated parameter. Cases from A1 to A5 and A7 are solved 
by the Ordinary Least Square method (OLS), which means that all the main diagonal terms of the 
covariance matrix C, are set to one. In this way, the experimental errors are not taken into 
account. About four iterations are necessary to achieve the final solution. The sixth column in 
Table I1 (tests A1-A3) shows that the maximum likelihood parameter can be estimated within 
a spread of about & 30 A. The two accuracy indexes uI and cT are provided in the seventh and 
eighth column, respectively. As already mentioned, the former gives the accuracy associated to 
the estimation procedure, the latter represents the goodness index of the temperature fitting. 
Figures 4-6 show the results from the best-fit analysis performed for the test cases Al,  A2, A3, 
respectively. 

Further tests, A4-A8, show how the amount of input information entered into the model 
influences the parameter estimation accuracy. Furthermore, these tests are carried out to check 
whether IFEM is sensitive to spatial or temporal data and how data may affect the convergence 
process. In the case A4, only N = 7 time records at M = 1 points (i.e. point A) are considered. The 
importance of point A is due to the fact that it corresponds to the location of the maximum 
temperature in the cycle. In this case A5, data at only N = 3 time levels are taken into account (i.e. 
the initial, the final and an intermediate one) at M = 4 points (i.e. A, B, C and D). The results of 
fitting for the cases A4 and A5 are shown in Figures 7 and 8, respectively. Case A6 is aimed at 
investigating on the estimation behaviour when experimental error information is also intro- 
duced as input to the IFEM. For this purpose a Weighted Least Squares (WLS) model, with 
a suitable covariance matrix C, is constructed. According to equation (25), the diagonal of the 



SINGLE SHOT INDUCTION HEATING 551 

Table 11. Coil current estimates obtained using simulated temperature 
data (A) and real recorded temperatures (B) during induction heating at 

8 kHz and duration of 12 s 

f TH OSIM I 
Test N M  (kHz) (s) Meth. ("C) (A) $1 ('6) 
A0 28 6 6 Exact 0 
A1 28 6 6 OLS 5 
A2 28 6 6 OLS 15 
A3 28 6 6 OLS 4 
A4 7 6  6 OLS 5 
A5 12 6 6 OLS 5 
A6 28 6 6 WLS 5 
A7 2 6  6 OLS 5 
A8 2 6  6 WLS 5 
B1 36 8 12 OLS - 

B2 36 8 12 WLS - 

4920 
4891 
4900 
4910 
4891 
4924 
4920 
4893 
4891 

3966 
396 1 

0 0  
2.5 5.5 
3 10.5 
2 4.5 

3.5 5 
3 3.5 
2 2.5 
4 4.5 
4 3  

1.0 16 
6.0 15 

Test A1 400r 300 

E " t  

' O 0 E  

__)(__ 

0 2 4 
time [s] 

4 
4 
d 6 

Figure 4. Matching between simulated (symbol) and model (line) temperatures in the case of nSrSIM = 5°C. The simulation 
refers to an induction heating process performed at 6 kHz for 6 s on aluminium alloy 

covariance matrix is here filled with values that mimic the instrument accuracy at the various 
temperature levels. In actual laboratory experiments, an optical fibre pyrometer has been used for 
recording temperatures at T 2 300°C with satisfactory accuracy. However, the range of temper- 
ature T < 300°C have been measured using a contact thermometer with inherent inaccuracy 
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2 4 
time [s] 

6 

Figure 5. Matching between simulated (symbol) and model (line) temperatures in the case of USlM = 15°C. The simulation 
refers to an induction heating process performed at 6 kHz and heating time equal to 6 s on aluminium alloy 

0 2 4 
time [s] 

6 

Figure 6. Matching between simulated (symbol) and model (line) temperatures in the case of uSIM = 4°C. The simulation 
refers to an induction heating process performed at 6 kHz and heating time equal to 6 s on aluminium alloy 
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Test A4 4001- 300 

2 - t  
L 

0 

I 

2 4 
time [s] 

6 

Figure 7. Matching between simulated (symbol) and model (line) temperatures in the case of a reduced amount of input 
data. Temperatures are recorded at 7 time instants at the point located in the middle of the two turns of the coil (i.e. A) 

0 1 2 
time [s] 

3 

Figure 8. Matching between simulated (symbol) and model (line) temperatures in the case of a reduced amount of input 
data. Temperatures are recorded at 3 time instants at 4 location points of the cylinder surface (i.e. A, B, C and D) 
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problems. The temperatures in the interval of about 300°C have been taken as average from both 
the pyrometer and the thermometer measurements. To take these errors into account, relatively 
low standard deviations have been assigned to those elements of the covariance matrix related to 
low-temperature data. 

The use of the covariance matrix has actually improved the convergence of the IFEM by 
lowering the number of iterations to four instead of five. Even further improvement may be 
expected by finer tuning of the diagonal element values of the C, matrix. The best-fitting result of 
the A6 case is not reported here since it much resembles that shown in Figure 4. 

As an extreme case, the effect of M = 1 spatial point (i.e. A) and N = 2 records, i.e. the initial 
(t = 0s) and the final (t = T ~ )  has been investigated with and without the use of the covariance 
matrix C,. The results of the A7 and A8 test cases are summarized in Table 11. 

Examination of columns sixth, seventh and eighth in Table I1 shows that, even with a low 
amount of input data, oI does not increase excessively and the spread of the unknown parameter 
is within the range of & 30A which is consistent with that observed in real experiments. 
In this sense, point A, may be regarded as the most critical location since the parameter 

estimation procedure is very sensitive to the temperature data measured at this point. 
To check the validity of the inverse procedure here proposed, actual coil current measurements 

have been directly carried out on the experimental system. The coil current measured is about 
3930 f 30 A, at 8 kHz with a heating cycle of 12 s. The temperature histories have been measured 
at M = 4 locations (i.e. points A, B, C, and D) and N = 9 discrete sampling times. The 
temperature data recorded is given in Table 111. 

The computational results of the B1 case obtained from the application of IFEM with an OLS 
estimator are summarized in Table 11. The B2 case refers to the same problem but with the use of 
the covariance matrix C,. Figures 9 and 10 show the fitting between the experimental temper- 
atures and those calculated using the inverse model. Plate 1 shows the isotherms map at 12 s with 
a modified aspect ratio for the sake of clarity. 

From an examination of Table 11, one again finds that the parameter estimated is in quite good 
agreement with that measured directly on the system. The estimated uncertainty is still of f 30 A 
and is in the range of the experimental errors. In seventh column of Table 11, it is confirmed that 
oI is bounded in both B1 and B2 cases meaning that the proximity-skin model employed is 

Table 111. Temperature records in ("C) in the 
case of aluminium alloy during induction heat- 

ing at 8 kHz and duration of 12s 

Temperature 
at location x ("C) 

Heating 
time (s) A B C D 

- 

0 25 25 25 25 
2 174 75 40 27 
4 250 123 70 44 
6 314 186 105 65 
8 378 225 123 78 
9 397 238 142 87 

10 429 263 161 92 
1 1  455 289 171 110 
12 474 301 187 139 
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Figure 9. Comparison between experimental (symbol) and model (line) temperatures in the case of an induction heating 
process performed at 8 kHz for 12 s on aluminiumalloy. The inverse model calculations have been carried out using the 

OLS estimation method 
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Figure 10. Comparison between experimental (symbol) and model (line) temperatures in the case of an induction heating 
process performed at 8 kHz for 12 s on aluminium alloy. The inverse model calculations have been carried out using the 

WLS estimation method 
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capable of modelling induction heating problems satisfactorily. Furthermore, the IFEM has 
shown that, as an extreme case, it is possible to estimate the unknown parameter within the limit 
of the experimental errors by using only one piece of input data, that is the temperature measured 
at the end of the cycle ( t  = zH) at the point location A. Numerical experiments not shown here13 
demonstrate that the same conclusion cannot be drawn if the A7 and A8 tests consider points 
such as B, C and D instead of A. 

8. CONCLUSIONS 

The results demonstrate that non-linear transient induction heating problems can be effectively 
modelled by conduction and proximity-skin equations. 

Temperature data is first used to solve the inherent parameter estimation problem. Measure- 
ments are easily performed by means of an optical pyrometer that records the thermal histories at 
specific sensor locations along the workpiece surface during on-line processing. 

Simulated experiments show that a good estimation of the coil current parameter can be 
obtained by a relatively low amount of input data. As an extreme case only one temperature 
measurement, i.e. in the middle of the coil turns, is enough for a satisfactory estimation of the 
unknown parameter. The more accurate the measurement of the maximum temperature is, the 
more reliable is the parameter estimation procedure. 

The IFEM has shown its capability to predict the critical location and the optimal number of 
temperature sensors consistently with a pre-specified estimate accuracy. 

From a practical point of view, the present procedure can be applied to a real plant to obtain an 
on-line control of any desired temperature in the workpiece together with the penetration depth 
by feed-back monitoring of the coil current. 

Finally, the IFEM has been satisfactorily used also when more than one parameter has to be 
estimated simultaneously. However, in some cases mild instabilities have been observed, prob- 
ably due to the ill-posed nature of the problem. 

NOTATIONS 

c 
f 
h 

H, p 
I 
r" 

IML 

J ( r )  
JR 

k 
M 
N 

PD 
q v  
S 
t 

T 
Rc 

specific heat, J/(kg K) 
working frequency, Hz 
distance between bar and coil, m 
working variables 
coil current, A 
guess value for coil current, A 
coil current estimated by maximum likelihood criterion, A 
current density at radius Y, A/mZ 
current density at radius R, A/mz 
thermal conductivity, W/(m K) 
number of discrete sample locations 
number of discrete sample times 
power density per unit of length, W/m3 
internal heat generation rate, W/m3 
weighted sum of square residuals 
time, s 
temperature, "C 
coil radius or an equivalent one, m 
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ambient temperature, K 
convection coeff. W/(m2 K) 
skin depth, m 
magnetic permeability, 
density, kg/m3 
electrical resistivity, Q/m 
estimated current variance, A 
variance of T values, “C 
heating time, s 
emissivity 
heating time, s 

Matrices 

C capacity matrix 
C, covariance matrix 

d experimental model data 
e experimental error 
F load vector 
K conductance matrix 
m model parameters 
s residuals 

T temperature vector 

Y observed temperatures 
Ye exact observed temperatures 
X sensitivity coefficients 

temperatures calculated at the same nodes and times of Y 
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